Cisco Catalyst LAN Switching

The authors would like to thank Radia Perlman for graciously contributing her time to review the material in this chapter.

This chapter covers the following key topics:

Most network administrators and designers underestimate the importance of the Spanning-Tree Protocol (STP). As routers became popular in the early 1990s, STP faded into the background as a "less important protocol that just worked." However, with the recent rise of switching technology, Spanning Tree has once again become an important factor that can have a tremendous impact on your network's performance.

In fact, STP often accounts for more than 50 percent of the configuration, troubleshooting, and maintenance headaches in real-world campus networks (especially if they are poorly designed). When I first encountered switching technology, I had the typical "I'm a Layer 3 pro, how hard could this STP stuff be?" mentality. However, I soon learned that STP is a complex protocol that is generally very poorly understood. I found it difficult to locate good Spanning Tree information, especially information about modern implementations of STP. The goal of this chapter (and Chapter 7) is to make your STP journey smooth sailing.

This chapter covers the mechanics of the Spanning-Tree Protocol as it performs its basic loop-prevention duties. To build a baseline knowledge of STP, the chapter begins by answering the questions "What is Spanning Tree?" and "Why do I need Spanning Tree?" From there, the chapter walks through the Spanning Tree algorithm in detail. In short, this chapter sets the stage for Chapter 7, "Advanced Spanning Tree," where complex topics such as load balancing and minimizing convergence time are presented in detail.

This chapter uses the terms bridge, switch, and Layer 2 switch interchangeably. Although some argue that there are differences between these types of devices, these differences are irrelevant when discussing Spanning Tree. This is particularly true when discussing the STP standards that were written prior to the development of hardware-based switches. For example, you will learn about the Root Bridge concept (don't worry about what it means yet). Although the term Root Switch is becoming more common, I find it awkward when first learning how the Spanning-Tree Protocol functions. However, the term switch is used when discussing particular network designs and deployments because it is rare to deploy a traditional, software-based bridge today.

Caution

Please note that the examples used in this chapter (and Chapter 7) are designed to illustrate the operation of the Spanning-Tree Protocol, not necessarily good design practices. Design issues are addressed in Chapter 11, "Layer 3 Switching," Chapter 14, "Campus Design Models," Chapter 15, "Campus Design Implementation," and Chapter 17, "Case Studies: Implementing Switches."

Категории