Appendix A. The T-Distribution Table The t-distribution is a probability distribution with a symmetrical, bell-shaped curve (similar to the standard normal curve), the shape of which is affected by a parameter known as the "degrees of freedom." We used t-distributions in Chapter 8 of this book to compute confidence intervals. In that usage, the degrees of freedom controlled how far out you had to go (in terms of standard deviations) on the t-distribution curve from the mean to encompass a given percentage of values. The higher the degrees of freedom, the larger the interval on the curve. Table A-1 gives t-distribution values for various probabilities, with each row representing 1 additional degree of freedom. Those values in the column for 0.05 (95%) were used in Chapter 8. Table A-1. The t-distribution table referenced in Chapter 8 | DF | Probabilities | | | 0.2 | 0.1 | 0.05 | 0.02 | 0.01 | 0.002 | 0.001 | | 1 | 3.078 | 6.314 | 12.706 | 31.82 | 63.66 | 318.3 | 637 | | 2 | 1.886 | 2.92 | 4.303 | 6.965 | 9.925 | 22.33 | 31.6 | | 3 | 1.638 | 2.353 | 3.182 | 4.541 | 5.841 | 10.21 | 12.92 | | 4 | 1.533 | 2.132 | 2.776 | 3.747 | 4.604 | 7.173 | 8.61 | | 5 | 1.476 | 2.015 | 2.571 | 3.365 | 4.032 | 5.893 | 6.869 | | 6 | 1.44 | 1.943 | 2.447 | 3.143 | 3.707 | 5.208 | 5.959 | | 7 | 1.415 | 1.895 | 2.365 | 2.998 | 3.499 | 4.785 | 5.408 | | 8 | 1.397 | 1.86 | 2.306 | 2.896 | 3.355 | 4.501 | 5.041 | | 9 | 1.383 | 1.833 | 2.262 | 2.821 | 3.25 | 4.297 | 4.781 | | 10 | 1.372 | 1.812 | 2.228 | 2.764 | 3.169 | 4.144 | 4.587 | | 11 | 1.363 | 1.796 | 2.201 | 2.718 | 3.106 | 4.025 | 4.437 | | 12 | 1.356 | 1.782 | 2.179 | 2.681 | 3.055 | 3.93 | 4.318 | | 13 | 1.35 | 1.771 | 2.16 | 2.65 | 3.012 | 3.852 | 4.221 | | 14 | 1.345 | 1.761 | 2.145 | 2.624 | 2.977 | 3.787 | 4.14 | | 15 | 1.341 | 1.753 | 2.131 | 2.602 | 2.947 | 3.733 | 4.073 | | 16 | 1.337 | 1.746 | 2.12 | 2.583 | 2.921 | 3.686 | 4.015 | | 17 | 1.333 | 1.74 | 2.11 | 2.567 | 2.898 | 3.646 | 3.965 | | 18 | 1.33 | 1.734 | 2.101 | 2.552 | 2.878 | 3.61 | 3.922 | | 19 | 1.328 | 1.729 | 2.093 | 2.539 | 2.861 | 3.579 | 3.883 | | 20 | 1.325 | 1.725 | 2.086 | 2.528 | 2.845 | 3.552 | 3.85 | | 21 | 1.323 | 1.721 | 2.08 | 2.518 | 2.831 | 3.527 | 3.819 | | 22 | 1.321 | 1.717 | 2.074 | 2.508 | 2.819 | 3.505 | 3.792 | | 23 | 1.319 | 1.714 | 2.069 | 2.5 | 2.807 | 3.485 | 3.768 | | 24 | 1.318 | 1.711 | 2.064 | 2.492 | 2.797 | 3.467 | 3.745 | | 25 | 1.316 | 1.708 | 2.06 | 2.485 | 2.787 | 3.45 | 3.725 | | 26 | 1.315 | 1.706 | 2.056 | 2.479 | 2.779 | 3.435 | 3.707 | | 27 | 1.314 | 1.703 | 2.052 | 2.473 | 2.771 | 3.421 | 3.69 | | 28 | 1.313 | 1.701 | 2.048 | 2.467 | 2.763 | 3.408 | 3.674 | | 29 | 1.311 | 1.699 | 2.045 | 2.462 | 2.756 | 3.396 | 3.659 | | 30 | 1.31 | 1.697 | 2.042 | 2.457 | 2.75 | 3.385 | 3.646 | | 32 | 1.309 | 1.694 | 2.037 | 2.449 | 2.738 | 3.365 | 3.622 | | 34 | 1.307 | 1.691 | 2.032 | 2.441 | 2.728 | 3.348 | 3.601 | | 36 | 1.306 | 1.688 | 2.028 | 2.434 | 2.719 | 3.333 | 3.582 | | 38 | 1.304 | 1.686 | 2.024 | 2.429 | 2.712 | 3.319 | 3.566 | | 40 | 1.303 | 1.684 | 2.021 | 2.423 | 2.704 | 3.307 | 3.551 | | 42 | 1.302 | 1.682 | 2.018 | 2.418 | 2.698 | 3.296 | 3.538 | | 44 | 1.301 | 1.68 | 2.015 | 2.414 | 2.692 | 3.286 | 3.526 | | 46 | 1.3 | 1.679 | 2.013 | 2.41 | 2.687 | 3.277 | 3.515 | | 48 | 1.299 | 1.677 | 2.011 | 2.407 | 2.682 | 3.269 | 3.505 | | 50 | 1.299 | 1.676 | 2.009 | 2.403 | 2.678 | 3.261 | 3.496 | | 55 | 1.297 | 1.673 | 2.004 | 2.396 | 2.668 | 3.245 | 3.476 | | 60 | 1.296 | 1.671 | 2 | 2.39 | 2.66 | 3.232 | 3.46 | | 65 | 1.295 | 1.669 | 1.997 | 2.385 | 2.654 | 3.22 | 3.447 | | 70 | 1.294 | 1.667 | 1.994 | 2.381 | 2.648 | 3.211 | 3.435 | | 80 | 1.292 | 1.664 | 1.99 | 2.374 | 2.639 | 3.195 | 3.416 | | 100 | 1.29 | 1.66 | 1.984 | 2.364 | 2.626 | 3.174 | 3.39 | | 150 | 1.287 | 1.655 | 1.976 | 2.351 | 2.609 | 3.145 | 3.357 | | 200 | 1.286 | 1.653 | 1.972 | 2.345 | 2.601 | 3.131 | 3.34 | |