AI Game Development: Synthetic Creatures with Learning and Reactive Behaviors

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

back propagation

    MLPs (multilayer perceptrons)  2nd  3rd  4th  5th  6th  7th  8th 

backups

    reinforcement learning  2nd  3rd 

backward connections 

backward-chain interpreters

    hypothesize-test cycles 

backward-chaining interpreters

    RBS interpreters  2nd  3rd 

bagging

    DTs (decision trees)  2nd 

ballistics

    shooting 

batch algorithms 

    MLPs (multilayer perceptrons)  2nd 

batch learning 

batching

    embodied agents 

behavior policies

    reinforcement learning  2nd  3rd 

behavioral decomposition 

behaviors 

    adaptive behaviors 

        AI engineering 

        debugging  2nd 

        design  2nd  3rd  4th 

        methodologies  2nd 

        problems  2nd  3rd  4th  5th 

        programming 

        testing  2nd 

    adaptive gathering behaviors

        reinforcement learning  2nd  3rd 

    architectures 

    emergent behaviors  2nd  3rd  4th  5th 

        affordance  2nd 

        broadcasting 

        environments  2nd 

        functionality  2nd  3rd 

        perception 

    evaluation  2nd  3rd 

    learning behaviors

        imitation 

        shaping 

        training 

        trial and error 

    learning systems 

    movement

        fuzzy set theory  2nd  3rd  4th  5th  6th  7th  8th  9th  10th  11th  12th  13th  14th  15th  16th  17th  18th  19th  20th  21st 

    objects 

        collecting 

        contraptions  2nd  3rd 

        criteria  2nd  3rd 

        specification  2nd  3rd  4th  5th  6th  7th 

    prediction of movement  2nd 

    responses

        designing 

    steering behaviors

        assumptions  2nd 

        fleeing  2nd  3rd 

        forced exploration 

        obstacle avoidance  2nd  3rd  4th  5th  6th  7th  8th  9th  10th  11th 

        obstacle avoidance algorithm 

        projecting targets 

        seeking  2nd  3rd 

        wandering 

    subsumption architecture  2nd  3rd  4th  5th  6th 

    tactical behaviors

        capability customization  2nd  3rd  4th  5th 

        strategic decision making  2nd 

        subsumption architecture  2nd  3rd  4th  5th 

    wall-following behaviors  2nd  3rd 

believability

    AI

        importance of 

bias

    perceptrons 

binary strings

    classifiers 

biological evolution 

    defensive actions

        application  2nd  3rd  4th  5th 

        evolutionary outline  2nd 

        fitness computations  2nd  3rd 

        genetic operators  2nd  3rd  4th 

        module design  2nd  3rd  4th 

        representation  2nd  3rd  4th  5th  6th 

    emotions  2nd 

        AI techniques  2nd 

        biological models  2nd 

        human/machine interaction  2nd  3rd  4th 

    genomics  2nd  3rd  4th 

    phenetics  2nd 

    reproduction  2nd  3rd 

    theory of evolution  2nd  3rd 

biological parallels

    MLPs (multilayer perceptrons)  2nd 

        brains  2nd  3rd 

        neurons  2nd  3rd 

biologically inspired models

    neural networks  2nd 

Black & White 

black box understanding 

    informal knowledge  2nd 

    software specification 

    theoretical analysis  2nd  3rd  4th 

bodies

    classifiers 

Boltzmann distribution 

Boolean conditional test

    DTs (decision trees) 

boosting

    DTs (decision trees)  2nd 

bootstrapping

    reinforcement learning  2nd 

bottom-up design 

brains

    perceptrons  2nd  3rd 

branches

    DTs

        pruning  2nd  3rd 

    DTs (decision trees) 

broadcasting

    emergent behaviors 

Brooks, Rodney 

brute-force optimization

    perceptrons  2nd  3rd 

Категории