AI Game Development: Synthetic Creatures with Learning and Reactive Behaviors

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

object-attribute-value paradigm  2nd 

    KR (knowledge representation)  2nd 

objects 

    behaviors 

        collecting 

        contraptions  2nd  3rd 

        criteria  2nd  3rd 

    contraptions 

    items 

    specification  2nd  3rd  4th  5th  6th  7th 

    test beds  2nd 

obstacle avoidance 

    containment  2nd  3rd  4th  5th  6th  7th  8th  9th  10th  11th 

    generalized obstacle avoidance  2nd 

Occam's razor 

odometers 

off-policy algorithms 

offline games

    learning systems 

offsetting modifiers 

on-policy algorithms 

OnCollision() function 

online forums

    AI specialists 

online games

    learning systems 

ontogenetic part

    animats 

operators 

    fuzzy set theory  2nd 

    genetic operators

        defensive actions  2nd  3rd  4th 

    phenotype-specific operators 

optimal policies

    reinforcement learning  2nd 

optimal returns

    reinforcement learning  2nd  3rd 

optimization 

    finite state machines  2nd  3rd  4th 

    learning systems 

optimization phase (development) 

optimization techniques

    perceptrons  2nd  3rd  4th 

        brute-force optimization  2nd  3rd 

        local minima  2nd  3rd 

        momentum  2nd  3rd 

        numeric optimization 

        simulated annealing  2nd  3rd  4th 

        steepest descent optimization  2nd  3rd  4th  5th  6th 

        training procedures  2nd  3rd  4th  5th  6th  7th  8th  9th 

        weights  2nd  3rd  4th  5th  6th  7th  8th 

organization

    reactive architectures  2nd  3rd 

outcome 

output 

    interpreting 

    perceptrons

        activation function  2nd  3rd 

        computing  2nd 

        net sums  2nd  3rd  4th 

    sketching 

output alphabet

    Mealy machines  2nd 

output function

    Mealy machines  2nd  3rd 

outputs

    perceptrons  2nd  3rd  4th  5th  6th  7th 

Категории