AI Game Development: Synthetic Creatures with Learning and Reactive Behaviors

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

random generation

    actions  2nd 

random solutions 

random walks (fitness) 

randvec() function 

range conditional tests

    DTs (decision trees) 

range weapons  2nd 

ranking

    fitness 

ranking policy (fitness) 

rationalizing phase

    specification procedures  2nd 

RBSs  2nd  3rd  4th  5th  6th 

    (rule-based systems) 

    advantages  2nd  3rd 

    application 

    behaviors

        wall-following behaviors  2nd  3rd 

    control strategies  2nd 

    data structures

        implementing 

    debugging 

    deciding on  2nd 

    design and development  2nd 

    disadvantages  2nd 

    effectors

        application 

    evaluating  2nd 

    implementing  2nd 

        data structures 

        interpreters 

    interpreters 

        backward-chaining systems  2nd  3rd 

        forward-chaing systems  2nd  3rd 

        forward-chaining systems 

        hybrid interpreters 

        implementing 

    knowledge elicitation  2nd  3rd  4th  5th 

    knowledge represeantation  2nd  3rd 

    modules

        initialization 

        initialization; rulebase  2nd 

        initialization; working memory  2nd 

        interfaces  2nd  3rd 

    NPCs (nonplayer characters) 

    problem solving 

    reusability 

    rulebase

        application  2nd 

    rules 

        data structures  2nd  3rd 

        extensions  2nd  3rd 

        processing 

        simplifying  2nd 

        single rules  2nd 

    sensors

        application 

    working memory  2nd 

        application  2nd 

reactive 

reactive AI 

reactive architectures  2nd 

    arbitration  2nd  3rd  4th 

    components  2nd 

    decomposition  2nd  3rd 

    examples  2nd  3rd  4th 

    organization  2nd  3rd 

reactive behaviors 

reactive component

    sense of state 

reactive mapping  2nd 

reactive planning 

    planning

        compared  2nd  3rd  4th  5th  6th  7th  8th 

reactive systems

    deficiencies 

reactive techniques  2nd 

    advantages  2nd  3rd  4th  5th 

    animats  2nd  3rd 

real-time strategy (RTS)  [See RTS (real-time strategy) games]

realism

    defining 

realistic movement 

recognize-act cycles

    forward-chain interpreters 

recognizers

    finite state automata 

recurrent connections 

recursive definition

    reinforcement learning  2nd 

recursive partitioning 

    data sets  2nd  3rd  4th 

    DTs (decision trees)  2nd  3rd 

refining problems 

    decomposition  2nd  3rd 

    simplification  2nd  3rd 

regression trees  2nd  3rd  4th  5th  6th  7th 

reinforcement

    classifiers  2nd  3rd 

reinforcement learning  2nd  3rd  4th  5th  6th  7th  8th 

    actions 

    adaptive gathering behaviors  2nd  3rd 

    advantages 

    algorithms

        dynamic programming  2nd  3rd  4th  5th  6th  7th 

        Monte Carlo methods  2nd  3rd  4th  5th  6th  7th 

        temporal-difference learning  2nd  3rd  4th 

    approximators  2nd 

    backups  2nd  3rd 

    behavior policies  2nd  3rd 

    bootstrapping  2nd 

    convergence  2nd 

    decomposition  2nd  3rd  4th  5th 

    disadvantages  2nd 

    hierarchies  2nd 

    in-game situations  2nd 

    Markov decision processes  2nd  3rd 

    model  2nd 

    movement modeling  2nd  3rd  4th 

    optimal returns  2nd  3rd 

    problems 

        exploitation  2nd  3rd 

        exploration  2nd  3rd 

    reward signals  2nd  3rd 

    shooting  2nd  3rd  4th 

    states 

    value functions  2nd 

        action values  2nd 

        optimal policies  2nd 

        recursive definition  2nd 

        state values  2nd 

reinforcement learning algorithms 

relative coordinate systems 

reliable movement 

remainder stochastic sampling

    fitness 

Remote animat 

replacement

    genetic operators  2nd 

replacements

    genetic algorithms  2nd  3rd 

represenation

    solutions  2nd  3rd  4th 

representation

    fuzzy state machines  2nd  3rd  4th 

    genetic algorithms  2nd  3rd  4th  5th  6th  7th  8th  9th  10th  11th 

    learning systems

        overlaps 

    solutions 

reproduction

    asexual reproduction 

    genetics  2nd  3rd 

    sexual breeding 

research phase (development) 

resilient propagation

    MLPs (multilayer perceptrons)  2nd  3rd  4th 

resources

    online forums 

response variables 

    DTs (decision trees)  2nd  3rd 

restrictions

    analysis phase

        engineering  2nd 

restrictive modifiers 

Return to Castle Wolfenstein  2nd 

returns 

    classifiers 

    expected returns 

    finite horizons 

    infinite returns 

    optimal returns

        reinforcement learning  2nd  3rd 

reward signals

    adaptive gathering behaviors 

    reinforcement learning  2nd  3rd 

rewards

    adaptive behaviors  2nd 

    average rewards 

    discounted rewards 

    mechanisms  2nd  3rd 

Reynolds, Craig 

    obstacle avoidance algorithm 

rivalries

    biological evolution 

robotics 

robotics systems

    navigation 

rocket jumping 

    fitness

        computing 

rockets

    dodging 

    tracking  2nd 

root nodes

    DTs (decision trees) 

Rosenblatt, Frank

    perceptrons  2nd 

roulette wheel policy (fitness) 

RTS

    (real-time strategy) games 

rule-based systems 

rule-based systems (RBSs)  [See RBSs (rule-based systems)]

rulebase

    fuzzy variables 

    RBSs

        application  2nd 

        initialization  2nd 

rules

    fuzzy rules  2nd  3rd 

    RBSs

        processing 

        simplifying  2nd 

    RBSs (rule-based systems) 

        data structures  2nd  3rd 

        extensions  2nd  3rd 

        single rules  2nd 

Категории