Road Map for Part One Chapter 2: Classical Encryption Techniques Chapter 2 describes classical symmetric encryption techniques. It provides a gentle and interesting introduction to cryptography and cryptanalysis and highlights important concepts. [Page 27]Chapter 3: Block Ciphers and the Data Encryption Standard Chapter 3 introduces the principles of modern symmetric cryptography, with an emphasis on the most widely used encryption technique, the Data Encryption Standard (DES). The chapter includes a discussion of design considerations and cryptanalysis and introduces the Feistel cipher, which is the basic structure of most modern symmetric encryption schemes. Chapter 4: Finite Fields Finite fields have become increasingly important in cryptography. A number of cryptographic algorithms rely heavily on properties of finite fields, notably the Advanced Encryption Standard (AES) and elliptic curve cryptography. This chapter is positioned here so that concepts relevant to AES can be introduced prior to the discussion of AES. Chapter 4 provides the necessary background to the understanding of arithmetic over finite fields of the form GF(2n). Chapter 5: Advanced Encryption Standard The most important development in cryptography in recent years is the adoption of a new symmetric cipher standard, AES. Chapter 5 provides a thorough discussion of this cipher. Chapter 6: More on Symmetric Ciphers Chapter 6 explores additional topics related to symmetric ciphers. The chapter begins by examining multiple encryption and, in particular, triple DES. Next, we look at the concept of block cipher modes of operation, which deal with ways of handling plaintext longer than a single block. Finally, the chapter discusses stream ciphers and describes RC4. Chapter 7: Confidentiality Using Symmetric Encryption Beyond questions dealing with the actual construction of a symmetric encryption algorithm, a number of design issues relate to the use of symmetric encryption to provide confidentiality. Chapter 7 surveys the most important of these issues. The chapter includes a discussion of end-to-end versus link encryption, techniques for achieving traffic confidentiality, and key distribution techniques. An important related topic, random number generation, is also addressed. |