Six Sigma and Beyond: Statistics and Probability, Volume III

To perform a statistical test of a hypothesis, you must make certain assumptions about the data. The particular assumptions you must make depend on the statistical test you are using. Some procedures require stricter assumptions than others. The assumptions are needed so that you (or your computer) can figure out what the distribution of the statistic is. Unless you know the distribution, you cannot determine the correct significance levels. For the pooled-variance t test, you need to assume that you have two random samples with the same population variance. You also need to assume that the distribution of the means is approximately normal, which can happen one of two ways:

Of course, some assumptions are more important than others. Moderate violation of some of them may not have very serious consequences. Therefore it is important to know, for each statistical procedure, not only what assumptions are needed but also how severely their violation may influence the results. We will talk about these things when we discuss the different statistical procedures. For example, as mentioned earlier, the F test for equality of variances is quite sensitive to departures from normality. The t test for equality of means is less so.

Based on the means observed in two independent samples, how can you test the hypothesis that two population means are equal? Here is the procedure:

Категории