Introduction to Management Science (10th Edition)
Calls | Probability |
---|---|
| .05 |
1 | .12 |
2 | .15 |
3 | .25 |
4 | .22 |
5 | .15 |
6 | .06 |
1.00 |
The rescue squad classifies each emergency call into one of three categories: minor, regular, or major emergency. The probability that a particular call will be each type of emergency is as follows :
Emergency Type | Probability |
---|---|
Minor | .30 |
Regular | .56 |
Major | .14 |
1.00 |
The type of emergency call determines the size of the crew sent in response. A minor emergency requires a two-person crew, a regular call requires a three-person crew, and a major emergency requires a five-person crew.
Simulate the emergency calls received by the rescue squad for 10 nights, compute the average number of each type of emergency call each night, and determine the maximum number of crew members that might be needed on any given night.
Solution
Step 1. | Develop Random Number Ranges for the Probability Distributions
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Step 2. | Set Up a Tabular Simulation
Use the second column of random numbers in Table 14.3:
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Step 3. | Compute Results
|
If all the calls came in at the same time, the maximum number of squad members required during any 1 night would be 14.