Concurrent Programming on Windows
To illustrate the various techniques of Windows programming, this book has lots of sample programs. These programs are written in C and use the native Windows APIs. I think of this approach as "classical" Windows programming. It is how we wrote programs for Windows 1.0 in 1985, and it remains a valid way of programming for Windows today.
APIs and Memory Models
To a programmer, an operating system is defined by its API. An API encompasses all the function calls that an application program can make of an operating system, as well as definitions of associated data types and structures. In Windows, the API also implies a particular program architecture that we'll explore in the chapters ahead.
Generally, the Windows API has remained quite consistent since Windows 1.0. A Windows programmer with experience in Windows 98 would find the source code for a Windows 1.0 program very familiar. One way the API has changed has been in enhancements. Windows 1.0 supported fewer than 450 function calls; today there are thousands.
The biggest change in the Windows API and its syntax came about during the switch from a 16-bit architecture to a 32-bit architecture. Versions 1.0 through 3.1 of Windows used the so-called segmented memory mode of the 16-bit Intel 8086, 8088, and 286 microprocessors, a mode that was also supported for compatibility purposes in the 32-bit Intel microprocessors beginning with the 386. The microprocessor register size in this mode was 16 bits, and hence the C int data type was also 16 bits wide. In the segmented memory model, memory addresses were formed from two components—a 16-bit segment pointer and a 16-bit offset pointer. From the programmer's perspective, this was quite messy and involved differentiating between long, or far, pointers (which involved both a segment address and an offset address) and short, or near, pointers (which involved an offset address with an assumed segment address).
Beginning in Windows NT and Windows 95, Windows supported a 32-bit flat memory model using the 32-bit modes of the Intel 386, 486, and Pentium processors. The C int data type was promoted to a 32-bit value. Programs written for 32-bit versions of Windows use simple 32-bit pointer values that address a flat linear address space.
The API for the 16-bit versions of Windows (Windows 1.0 through Windows 3.1) is now known as Win16. The API for the 32-bit versions of Windows (Windows 95, Windows 98, and all versions of Windows NT) is now known as Win32. Many function calls remained the same in the transition from Win16 to Win32, but some needed to be enhanced. For example, graphics coordinate points changed from 16-bit values in Win16 to 32-bit values in Win32. Also, some Win16 function calls returned a two-dimensional coordinate point packed in a 32-bit integer. This was not possible in Win32, so new function calls were added that worked in a different way.
All 32-bit versions of Windows support both the Win16 API to ensure compatibility with old applications and the Win32 API to run new applications. Interestingly enough, this works differently in Windows NT than in Windows 95 and Windows 98. In Windows NT, Win16 function calls go through a translation layer and are converted to Win32 function calls that are then processed by the operating system. In Windows 95 and Windows 98, the process is opposite that: Win32 function calls go through a translation layer and are converted to Win16 function calls to be processed by the operating system.
At one time, there were two other Windows API sets (at least in name). Win32s ("s" for "subset") was an API that allowed programmers to write 32-bit applications that ran under Windows 3.1. This API supported only 32-bit versions of functions already supported by Win16. Also, the Windows 95 API was once called Win32c ("c" for "compatibility"), but this term has been abandoned.
At this time, Windows NT and Windows 98 are both considered to support the Win32 API. However, each operating system supports some features not supported by the other. Still, because the overlap is considerable, it's possible to write programs that run under both systems. Also, it's widely assumed that the two products will be merged at some time in the future.
Language Options
Using C and the native APIs is not the only way to write programs for Windows 98. However, this approach offers you the best performance, the most power, and the greatest versatility in exploiting the features of Windows. Executables are relatively small and don't require external libraries to run (except for the Windows DLLs themselves, of course). Most importantly, becoming familiar with the API provides you with a deeper understanding of Windows internals, regardless of how you eventually write applications for Windows.
Although I think that learning classical Windows programming is important for any Windows programmer, I don't necessarily recommend using C and the API for every Windows application. Many programmers—particularly those doing in-house corporate programming or those who do recreational programming at home—enjoy the ease of development environments such as Microsoft Visual Basic or Borland Delphi (which incorporates an object-oriented dialect of Pascal). These environments allow a programmer to focus on the user interface of an application and associate code with user interface objects. To learn Visual Basic, you might want to consult some other Microsoft Press books, such as Learn Visual Basic Now (1996), by Michael Halvorson.
Among professional programmers—particularly those who write commercial applications—Microsoft Visual C++ with the Microsoft Foundation Class Library (MFC) has been a popular alternative in recent years. MFC encapsulates many of the messier aspects of Windows programming in a collection of C++ classes. Jeff Prosise's Programming Windows with MFC, Second Edition (Microsoft Press, 1999) provides tutorials on MFC.
Most recently, the popularity of the Internet and the World Wide Web has given a big boost to Sun Microsystems' Java, the processor-independent language inspired by C++ and incorporating a toolkit for writing graphical applications that will run on several operating system platforms. A good Microsoft Press book on Microsoft J++, Microsoft's Java development tool, is Programming Visual J++ 6.0 (1998), by Stephen R. Davis.
Obviously, there's hardly any one right way to write applications for Windows. More than anything else, the nature of the application itself should probably dictate the tools. But learning the Windows API gives you vital insights into the workings of Windows that are essential regardless of what you end up using to actually do the coding. Windows is a complex system; putting a programming layer on top of the API doesn't eliminate the complexity—it merely hides it. Sooner or later that complexity is going to jump out and bite you in the leg. Knowing the API gives you a better chance at recovery.
Any software layer on top of the native Windows API necessarily restricts you to a subset of full functionality. You might find, for example, that Visual Basic is ideal for your application except that it doesn't allow you to do one or two essential chores. In that case, you'll have to use native API calls. The API defines the universe in which we as Windows programmers exist. No approach can be more powerful or versatile than using this API directly.
MFC is particularly problematic. While it simplifies some jobs immensely (such as OLE), I often find myself wrestling with other features (such as the Document/View architecture) to get them to work as I want. MFC has not been the Windows programming panacea that many hoped for, and few people would characterize it as a model of good object-oriented design. MFC programmers benefit greatly from understanding what's going on in class definitions they use, and find themselves frequently consulting MFC source code. Understanding that source code is one of the benefits of learning the Windows API.
The Programming Environment
In this book, I'll be assuming that you're running Microsoft Visual C++ 6.0, which comes in Standard, Professional, and Enterprise editions. The less-expensive Standard edition is fine for doing the programs in this book. Visual C++ is also part of Visual Studio 6.0.
The Microsoft Visual C++ package includes more than the C compiler and other files and tools necessary to compile and link Windows programs. It also includes the Visual C++ Developer Studio, an environment in which you can edit your source code; interactively create resources such as icons and dialog boxes; and edit, compile, run, and debug your programs.
If you're running Visual C++ 5.0, you might need to get updated header files and import libraries for Windows 98 and Windows NT 5.0. These are available at Microsoft's web site. Go to http://www.microsoft.com/msdn/, and choose Downloads and then Platform SDK ("software development kit"). You'll be able to download and install the updated files in directories of your choice. To direct the Microsoft Developer Studio to look in these directories, choose Options from the Tools menu and then pick the Directories tab.
The msdn portion of the Microsoft URL above stands for Microsoft Developer Network. This is a program that provides developers with frequently updated CD-ROMs containing much of what they need to be on the cutting edge of Windows development. You'll probably want to investigate subscribing to MSDN and avoid frequent downloading from Microsoft's web site.
API Documentation
This book is not a substitute for the official formal documentation of the Windows API. That documentation is no longer published in printed form; it is available only via CD-ROM or the Internet.
When you install Visual C++ 6.0, you'll get an online help system that includes API documentation. You can get updates to that documentation by subscribing to MSDN or by using Microsoft's Web-based online help system. Start by linking to http://www.microsoft.com/msdn/, and select MSDN Library Online.
In Visual C++ 6.0, select the Contents item from the Help menu to invoke the MSDN window. The API documentation is organized in a tree-structured hierarchy. Find the section labeled Platform SDK. All the documentation I'll be citing in this book is from this section. I'll show the location of documentation using the nested levels starting with Platform SDK separated by slashes. (I know the Platform SDK looks like a small obscure part of the total wealth of MSDN knowledge, but I assure you that it's the essential core of Windows programming.) For example, for documentation on how to use the mouse in your Windows programs, you can consult /Platform SDK/User Interface Services/User Input/Mouse Input.
I mentioned before that much of Windows is divided into the Kernel, User, and GDI subsystems. The kernel interfaces are in /Platform SDK/Windows Base Services, the user interface functions are in /Platform SDK/User Interface Services, and GDI is documented in /Platform SDK/Graphics and Multimedia Services/GDI.
Категории