PMP Project Management Professional Study Guide, Third Edition (Certification Press)

 < Day Day Up > 


Ready for a loaded question? 'Now how long will all of this take?' Project managers hear this one all the time, right? And maybe right after that: 'How much will all of this cost?' We'll talk about cost estimates in Chapter 7. For now, let's talk about time.

The answer to the question 'How long will it take?' depends on the accuracy of the estimates, the consistency of the work, and other variables within the project. The best a project manager can do is create honest estimates based on the information he's been provided. Until the schedule is finalized, no one will know the duration of the project.

The tasks are first identified, their duration is estimated, and then the sequencing of the activities takes place. These activities are required to complete the project schedule and the estimated project duration. These three activities are iterated as more information comes available. If the proposed schedule is acceptable, the project can move forward. If the proposed schedule takes too long, the scheduler can use a few strategies to compress the project. We'll discuss the art of sequencing in a few moments.

Activity duration estimates, like the activity list and the WBS, don't come from the project manager-they come from the people completing the work. Activity duration estimates may undergo progressive elaboration. In this section, we'll examine the approach to completing activity duration estimates, the basis of estimates, and allow for activity list updates.

Considering the Activity Duration Estimates Inputs

The importance of accurate estimates is paramount. The activity estimates will be used to create the project schedule, and predict when the project should end. Inaccurate estimates could cost the performing organization thousands of dollars in fines, lost opportunities, loss of customers, or worse. To create accurate estimates, the project manager and the project team will rely on several inputs:

Applying Expert Judgment

The project manager and the project team should utilize expert judgment if possible to predict the duration of project activities. Expert judgment can come from subject matter experts, project team members, and other resources, internal or external to the performing organization, that are familiar with the activities the project demands.

Estimating durations is not easy as there are many variables that can influence an activity's duration. Consider the amount of resources that can be applied to the resources, the experience of the resources completing this type of work, and their competence with the work packages.

On the Job 

A big dose of reality is also needed with activity duration estimates. Imagine an activity that has been estimated to take 40 hours. While on paper that looks like a typical workweek, it's pretty unlikely the task will be completed within one week. Why? Consider all the phone calls, impromptu meetings, e-mail, and other interruptions throughout the day. These slivers of time chip away at the actual productive hours within a workday. The project manager should find a base of actual productive hours per day based on typical interruptions, meetings, and so on; for example, six productive hours out of eight working hours is typical. Based on this assumption (that six hours out of a day are productive), this means a task slated to last 40 hours will actually take nearly seven working days to complete.

Creating an Analogy

Analogous estimating relies on historical information to predict what current activity durations should be. Analogous estimating is also known as top-down estimating and is a form of expert judgment. To use analogous estimating, the activities from the historical project are similar in nature and are used to predict what the similar activities in the current project will take.

A project manager must consider if the work has ever been done before, and if so, what help will the historical information provide. The project manager must consider the resources, project team members, and equipment that completed the activities in the previous project compared to the resources available for the current project. Ideally, the activities should be more than similar; they should be identical. And the resources that completed the work in the past should be the same resources used in completing the current work.

When the only source of activity duration estimates is the project team members, instead of expert judgment and historical information, your estimates will be uncertain and inherently risky.

Exam Watch

Analogous estimating uses historical information and is more reliable than predictions from the project team members.

Applying Quantitative Estimates

Quantitatively-based durations use mathematical formulas to predict how long an activity will take based on the 'quantities' of work to be completed. For example, a commercial printer needs to print 100,000 brochures. The workers include two pressman and two bindery experts to fold and package the brochures. Notice how the duration is how long the activity will take to complete, while the effort is the total number of hours (labor) invested because of the resources involved. The decomposed work, with quantitative factors, is shown in Table 6-1.

Table 6-1: Decomposed Work, with Quantitative Factors

Workers

Units per hour

Duration for 100,000

Effort

Pressman (two)

5,000

20 hours

40 hours

Bindery (two)

4,000

25 hours

50 hours

Totals

 

45 hours

90 hours

Exam Watch

Duration is how long an activity takes, while effort is the billable time for the labor to complete the activity. Consider an activity that is scheduled to last 40 hours. The project manager must consider the cost of the person's time assigned to complete project work-for example, a senior full-time engineer versus a part-time person, at a lower cost. The senior engineer may be able to complete the activity in 40 consecutive work hours, but the cost of this employee's time may be more than the value of the activity. The part-time employee may be able to complete the task in two segments of 20 hours, but their time is billed at a substantially lower rate.

Factoring in Reserve Time

Parkinson's Law states: 'Work expands so as to fill the time available for its completion.' This little nugget of wisdom is oh-so-true. Consider a project team member that knows an activity should last 24 hours. The team member decides, in his own wisdom, to say the activity will last 32 hours. This extra eight hours, he figures, will allow plenty of time for the work to be completed should any unforeseen incidents pop-up. The trouble is, however, that the task will magically expand to require the complete 32 hours. Why does this happen? Consider the following:

So what's a project manager to do? First off, the project manager should strive to incorporate historical information and expert judgment to predicate accurate estimates. Second, the project manager should stress a genuine need for accurate duration estimates. Finally, the project manager can incorporate a reserve time.

A reserve time is a percentage of the project duration or a preset number of work periods and is usually added to the end of the project schedule. Reserve time may also be added to individual activity durations based on risk or uncertainty in the activity duration. When activities are completed late, the additional time for the activity is subtracted from the reserve time. As the project moves forward, the reserve time can be reduced or eliminated as the project manager sees fit. Reserve time decisions should be documented.

Evaluating the Estimates

The end result of estimating activities provides three things:

Inside the Exam

There's a ton of information in this chapter-all of it important-but there are some key things you must know to pass the PMP exam. For starters, you should understand how activity estimates are created.

Analogous estimates use historical information to predict how long current project activities will take place. These estimates are considered top-down estimates and are part of expert judgment. Quantifiable estimates, on the other hand, use a quantity to predict how long activities will take. Consider any unit such as square feet painted per hour or number of units created per day.

GERT is the only network diagram that allows for loops and conditional branching based on what the project has experienced to date. System dynamics is another example of conditional advancement.

When developing the schedule, the most common method is the CPM, though PERT and GERT may also be used. Lag is a positive time added to a task to indicate waiting. Lead is negative time added to a task to 'hurry up.' Fast tracking arranges activities to happen in tandem rather than in succession-this increases risk. Crashing adds more resources to activities to decrease their duration, which typically adds cost.

Monte Carlo Analysis is typically a computer program to estimate the many possible variables within a project schedule. Monte Carlo simulations predict probable end dates, not an exact end date. Another tool the project manager can use is resource leveling. Resource leveling smoothes out the project schedule so resources are not over-allocated. A result of this is that projects are often scheduled to last longer than initial estimates.

The critical path in a project has zero float, and is the path with the longest duration to completion. There can be more than one critical path in a network diagram. Should delays happen on noncritical paths, and all float is consumed, the critical path may change.

The project schedule is a calendar-based system used to predict when the project, and work, will start and end. Gantt charts map activities against a calendar and may show the relationship between activities. Milestone charts show when key deliverables are expected; they do not show the relationship between activities.


 < Day Day Up > 

Категории