Deploying IPv6 Networks
| The QoS provided by EuropCom to its IPv4 enterprise customers is a key feature of its service marketing. The demand for guaranteed levels of service has risen because most EuropCom VPN customers have migrated their mission-critical applications, including voice and video, over IP/MPLS. A primary constraint of EuropCom IPv6 deployment is to prevent any impact on IPv4 QoS. At the same time, many IPv6 applications are IPv4 applications migrating to IPv6 (critical data, voice, and video). EuropCom customers expect them to run over IP/MPLS and get the same QoS as their IPv4 counterpart. IPv6's interaction with the existent QoS deployment for IPv4 is multifaceted:
The EuropCom MPLS backbone is overengineered and can accommodate the IPv4 as well as the additional IPv6 traffic. IPv6 traffic growth forecasts for the next two to three years justify maintaining the current core design for two major reasons:
Overengineering the backbone has saved EuropCom from implementing differentiated services (DiffServ) in the core network. For this reason, it does not care about mixed classes received from customer CEs and has not configured any QoS mechanism at the ingress PE. For IPv6, the same strategy applies, and no QoS mechanism/configuration needs to take place on the ingress interfaces. Note that EuropCom customers can configure QoS on the CE-PE interfaces, at their convenience and leading to two possible scenarios:
On the egress side, some EuropCom customers have requested DiffServ to be activated on the PE-CE interfaces. Because QoS is not activated at the ingress or in the core, the Precedence field set in packets received from the customer network is carried transparently up to the egress PE. EuropCom can use the value to apply PHBs on the PE-CE link. EuropCom has defined (for IPv4) the precedence-to-PHB mapping shown in Table 13-8 on the PE-CE interface.
Note During congestion states, it is important to protect critical control traffic such as routing protocol traffic. Control traffic is tagged with precedence 6, and its prioritized handling is implemented with the help of the Selective Packet Discard (SPD) mechanism. IPv6 control traffic must also be marked with precedence 6, to avoid being dropped by SPD under congestion conditions.
When enabling VPNv6 on the egress PE, no change is expected in the QoS configuration. Example 13-24 illustrates Nice-PE-VPN QoS configuration. Example 13-24. QoS Configuration of PE Router Nice-PE-VPN
The match precedence command applies to both IPv4 and IPv6 packets. The behavior on PE-CE links is controlled by customer precedence set at the ingress CE (or application). The customer can decide to use the same classification policy for IPv4 and IPv6. |
Категории