Base SAS 9.1 Procedures Guide, Volumes 1, 2, 3 and 4
Chapter 1: The CORR Procedure
- Output 1.1.1: Simple Statistics
- Output 1.1.2: Pearson Correlation Coefficients
- Output 1.1.3: Spearman Correlation Coefficients
- Output 1.1.4: Kendalls Tau-b Correlation Coefficients
- Output 1.1.5: Hoeffdings Dependence Coefficients
- Output 1.1.6: Symmetric Scatter Plot Matrix (Experimental)
- Output 1.2.1: Simple Statistics
- Output 1.2.2: Sum-of-squares and Crossproducts
- Output 1.2.3: Variances and Covariances
- Output 1.2.4: Pearson Correlation Coefficients
- Output 1.2.5: Rectangular Matrix Plot (Experimental)
- Output 1.3.1: Sample Correlations
- Output 1.3.2: Correlation Statistics Using Fishers z Transformation
- Output 1.3.3: One-sided Correlation Analysis Using Fishers z Transformation
- Output 1.4.1: Fishers Test for H : =
- Output 1.4.2: Fishers Correlation Statistics
- Output 1.4.3: Test of Equality of Observed Correlations
- Output 1.4.4: Combined Correlation Estimate
- Output 1.5.1: Simple Statistics
- Output 1.5.2: Pearson Correlation Coefficients
- Output 1.7.3: Scatter Plot Matrix (Experimental)
- Output 1.5.3: Cronbachs Coefficient Alpha
- Output 1.5.4: Cronbachs Coefficient Alpha with Deleted Variables
- Output 1.6.1: Pearson Correlation Coefficients
- Output 1.6.2: OUTP= Data Set with Pearson Correlations
- Output 1.7.1: Simple Statistics
- Output 1.7.2: Pearson Correlation Coefficients
- Output 1.7.4: Scatter Plot with Prediction Ellipses (Experimental)
- Output 1.7.5: Scatter Plot with Prediction Ellipses (Experimental)
- Output 1.7.6: Scatter Plot with Confidence Ellipses (Experimental)
- Output 1.8.1: Descriptive Statistics
- Output 1.8.2: Pearson Partial Correlation Coefficients
- Output 1.8.3: Partial Residual Scatter Plot (Experimental)
Chapter 2: The FREQ Procedure
- Output 2.1.1: Frequency Tables
- Output 2.1.2: Crosstabulation Table
- Output 2.1.3: OUT= Data Set
- Output 2.2.1: One-Way Frequency Table with BY Groups
- Output 2.3.1: Binomial Proportion for Eye Color
- Output 2.3.2: Binomial Proportion for Hair Color
- Output 2.4.1: Contingency Table
- Output 2.4.2: Chi-Square Statistics
- Output 2.4.3: Relative Risk
- Output 2.5.1: Contingency Table
- Output 2.5.2: Chi-Square Statistics
- Output 2.5.3: Output Data Set
- Output 2.6.1: Cochran-Mantel-Haenszel Statistics
- Output 2.6.2: CMH OptionRelative Risks
- Output 2.6.3: CMH OptionBreslow-Day Test
- Output 2.7.1: Contingency Table
- Output 2.7.2: Measures of Association
- Output 2.7.3: Trend Test
- Output 2.8.1: CMH StatisticsStratifying by Subject
- Output 2.8.2: CMH StatisticsNo Stratification
- Output 2.9.1: One-Way Frequency Tables
- Output 2.9.2: Measures of Agreement
- Output 2.9.3: Cochrans Q
Chapter 3: The UNIVARIATE Procedure
- Output 3.1.1: Display Basic Measures and Quantiles
- Output 3.2.1: Table of Modes Display
- Output 3.2.2: Default Output (Without MODES Option)
- Output 3.3.1: Blood Pressure Extreme Observations
- Output 3.3.2: Blood Pressure Extreme Values
- Output 3.4.1: Table of Frequencies
- Output 3.5.1: Ozone Plots for BY Group Site = 102
- Output 3.5.2: Ozone Plots for BY Group Site = 134
- Output 3.5.3: Ozone Plots for BY Group Site = 137
- Output 3.5.4: Ozone Side-by-Side Boxplot for All BY Group
- Output 3.6.1: Table of Moments
- Output 3.7.1: Listing of Output Data Set Means
- Output 3.7.2: Listing of Output Data Set StrengthStats
- Output 3.8.1: Listing of Output Data Set PctlStrength
- Output 3.8.2: Listing of Output Data Set Pctls
- Output 3.9.1: Default 95% Confidence Limits
- Output 3.9.2: 90% Confidence Limits
- Output 3.10.1: Normal-Based Quantile Confidence Limits
- Output 3.10.2: Distribution-Free Quantile Confidence Limits
- Output 3.11.1: Computation of Trimmed and Winsorized Means
- Output 3.11.2: Computation of Robust Estimates of Scale
- Output 3.12.1: Tests for Location with MU0=66 and LOCCOUNT
- Output 3.13.1: Sign Test for ScoreChange
- Output 3.14.1: Histogram for Plating Thickness
- Output 3.15.1: Partial Listing of Data Set Channel
- Output 3.15.2: Histogram for Length Ignoring Lot Source
- Output 3.15.3: Comparison by Lot Source
- Output 3.16.1: Two-Way Comparative Histogram
- Output 3.17.1: Comparative Histograms
- Output 3.18.1: Table of Bin Percentages Requested with MIDPERCENTS Option
- Output 3.18.2: Histogram with ENDPOINTS= Option
- Output 3.18.3: Histogram with MIDPOINTS= and RTINCLUDE Options
- Output 3.18.4: The OUTHISTOGRAM= Data Set OutMdpts
- Output 3.19.1: Summary of Fitted Normal Distribution
- Output 3.19.2: Summary of Fitted Normal Distribution (cont.)
- Output 3.19.3: Histogram Superimposed with Normal Curve
- Output 3.20.1: Fitting Normal Curves to a Comparative Histogram
- Output 3.21.1: Superimposing a Histogram with a Fitted Beta Curve
- Output 3.21.2: Summary of Fitted Beta Distribution
- Output 3.22.1: Superimposing a Histogram with Fitted Curves
- Output 3.22.2: Summary of Fitted Lognormal Distribution
- Output 3.22.3: Summary of Fitted Lognormal Distribution (cont.)
- Output 3.22.4: Summary of Fitted Weibull Distribution
- Output 3.22.5: Summary of Fitted Gamma Distribution
- Output 3.23.1: Multiple Kernel Density Estimates
- Output 3.24.1: Three-Parameter Lognormal Fit
- Output 3.25.1: Preliminary Estimates of , ƒ , and
- Output 3.25.2: Final Estimates of , ƒ , and
- Output 3.25.3: The Data Set OutCalc
- Output 3.25.4: Histogram with Annotated Folded Normal Curve
- Output 3.26.1: Probability Plot Based on Lognormal Distribution with ƒ =0.7
- Output 3.26.2: Probability Plot Based on Lognormal Distribution with ƒ =0.9
- Output 3.26.3: Probability Plot Based on Lognormal Distribution with ƒ =1.1
- Output 3.26.4: Probability Plot Based on Lognormal Distribution with Estimated ƒ
- Output 3.27.1: Normal Probability Plot Created with Graphics Device
- Output 3.27.2: Summary of Fitted Lognormal Distribution
- Output 3.28.1: Normal Quantile-Quantile Plot for Distance
- Output 3.29.1: Adding a Distribution Reference Line to a Q-Q Plot
- Output 3.30.1: Normal Quantile-Quantile Plot of Nonnormal Data
- Output 3.31.1: Lognormal Quantile-Quantile Plot ( ƒ =0.2)
- Output 3.31.2: Lognormal Quantile-Quantile Plot ( ƒ =0.5)
- Output 3.31.3: Lognormal Quantile-Quantile Plot ( ƒ =0.8)
- Output 3.31.4: Lognormal Quantile-Quantile Plot ( ƒ =est, =est, =5)
- Output 3.32.1: Lognormal Q-Q Plot Identifying Percentiles
- Output 3.33.1: Two-Parameter Lognormal Q-Q Plot for Diameters
- Output 3.34.1: Three-Parameter Weibull Q-Q Plot
- Output 3.34.2: Two-Parameter Weibull Q-Q Plot for = 24