Representing Large Fixed-Width Integers
Problem
You need to perform arithmetic of numbers larger than can be represented by a long int.
Solution
The BigInt template in Example 11-38 uses the bitset from the header to allow you to represent unsigned integers using a fixed number of bits specified as a template parameter.
Example 11-38. big_int.hpp
#ifndef BIG_INT_HPP #define BIG_INT_HPP #include #include "bitset_arithmetic.hpp" // Recipe 11.20 template class BigInt { typedef BigInt self; public: BigInt( ) : bits( ) { } BigInt(const self& x) : bits(x.bits) { } BigInt(unsigned long x) { int n = 0; while (x) { bits[n++] = x & 0x1; x >>= 1; } } explicit BigInt(const std::bitset& x) : bits(x) { } // public functions bool operator[](int n) const { return bits[n]; } unsigned long toUlong( ) const { return bits.to_ulong( ); } // operators self& operator<<=(unsigned int n) { bits <<= n; return *this; } self& operator>>=(unsigned int n) { bits >>= n; return *this; } self operator++(int) { self i = *this; operator++( ); return i; } self operator--(int) { self i = *this; operator--( ); return i; } self& operator++( ) { bool carry = false; bits[0] = fullAdder(bits[0], 1, carry); for (int i = 1; i < N; i++) { bits[i] = fullAdder(bits[i], 0, carry); } return *this; } self& operator--( ) { bool borrow = false; bits[0] = fullSubtractor(bits[0], 1, borrow); for (int i = 1; i < N; i++) { bits[i] = fullSubtractor(bits[i], 0, borrow); } return *this; } self& operator+=(const self& x) { bitsetAdd(bits, x.bits); return *this; } self& operator-=(const self& x) { bitsetSubtract(bits, x.bits); return *this; } self& operator*=(const self& x) { bitsetMultiply(bits, x.bits); return *this; } self& operator/=(const self& x) { std::bitset tmp; bitsetDivide(bits, x.bits, bits, tmp); return *this; } self& operator%=(const self& x) { std::bitset tmp; bitsetDivide(bits, x.bits, tmp, bits); return *this; } self operator~( ) const { return ~bits; } self& operator&=(self x) { bits &= x.bits; return *this; } self& operator|=(self x) { bits |= x.bits; return *this; } self& operator^=(self x) { bits ^= x.bits; return *this; } // friend functions friend self operator<<(self x, unsigned int n) { return x <<= n; } friend self operator>>(self x, unsigned int n) { return x >>= n; } friend self operator+(self x, const self& y) { return x += y; } friend self operator-(self x, const self& y) { return x -= y; } friend self operator*(self x, const self& y) { return x *= y; } friend self operator/(self x, const self& y) { return x /= y; } friend self operator%(self x, const self& y) { return x %= y; } friend self operator^(self x, const self& y) { return x ^= y; } friend self operator&(self x, const self& y) { return x &= y; } friend self operator|(self x, const self& y) { return x |= y; } // comparison operators friend bool operator==(const self& x, const self& y) { return x.bits == y.bits; } friend bool operator!=(const self& x, const self& y) { return x.bits != y.bits; } friend bool operator>(const self& x, const self& y) { return bitsetGt(x.bits, y.bits); } friend bool operator<(const self& x, const self& y) { return bitsetLt(x.bits, y.bits); } friend bool operator>=(const self& x, const self& y) { return bitsetGtEq(x.bits, y.bits); } friend bool operator<=(const self& x, const self& y) { return bitsetLtEq(x.bits, y.bits); } private: std::bitset bits; }; #endif
The BigInt template class could be used to represent factorials, as shown in Example 11-39.
Example 11-39. Using the big_int class
#include "big_int.hpp" #include #include #include #include using namespace std; void outputBigInt(BigInt<1024> x) { vector v; if (x == 0) { cout << 0; return; } while (x > 0) { v.push_back((x % 10).to_ulong( )); x /= 10; } copy(v.rbegin( ), v.rend( ), ostream_iterator(cout, "")); cout << endl; } int main( ) { BigInt<1024> n(1); // compute 32 factorial for (int i=1; i <= 32; ++i) { n *= i; } outputBigInt(n); }
The program in Example 11-39 outputs:
263130836933693530167218012160000000
Discussion
Large integers are common in many applications. In cryptography, for example, integers of 1,000 bits and larger are not uncommon. However, the current C++ standard provides integers only as large as a long int.
|
The next version of the standard (C++ 0x) is expected to follow the C99 standard and provide a long long type that will be defined as being at least as large as a long int, and possibly bigger. Despite this there will always be occasions where an integer type larger than the largest primitive is needed.
The implementation I presented here is based on a binary representation of numbers using a bitset, at a cost of some performance. What I lost in performance I more than made up for in simplicity. A more efficient implementation of arbitrary precision numbers could easily fill the book.
See Also
Recipe 11.19