DFT FREQUENCY AXIS

The frequency axis m of the DFT result in Figure 3-4 deserves our attention once again. Suppose we hadn't previously seen our DFT Example 1, were given the eight input sample values, from Eq. (3-11'), and asked to perform an 8-point DFT on them. We'd grind through Eq. (3-2) and get the X(m) values shown in Figure 3-4. Next we ask, "What's the frequency of the highest magnitude component in X(m) in Hz?" The answer is not "1." The answer depends on the original sample rate fs. Without prior knowledge, we have no idea over what time interval the samples were taken, so we don't know the absolute scale of the X(m) frequency axis. The correct answer to the question is to take fs and plug it into Eq. (3-5) with m = 1. Thus, if fs = 8000 samples/s, then the frequency associated with the largest DFT magnitude term is

If we said the sample rate fs was 75 samples/s, we'd know, from Eq. (3-5), that the frequency associated with the largest magnitude term is now

OK, enough of this—just remember that the DFT's frequency spacing (resolution) is fs/N.

To recap what we've learned so far:

It's also important to realize, from Eq. (3-5), that X(N/2+1), when m = N/2+1, corresponds to half the sample rate, i.e., the folding (Nyquist) frequency fs/2.

 
Amazon
 
 
Prev don't be afraid of buying books Next
 
 

Категории

© amp.flylib.com,